
DII.30B.DECIBM.RG-1

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

Version 3.0/B

Application Programmer Interface (API) Reference Guide

(Digital UNIX and AIX)

February 19, 1997

Prepared for:

Defense Information Systems Agency

Prepared by:

Inter-National Research Institute (INRI)
12200 Sunrise Valley Drive, Suite 300

Reston, Virginia 20191

DII.30B.DECIBM.RG-1

February 19, 1997 i

Table of Contents

Preface..1

1. Introduction..3
1.1 Overview ...3
1.2 Additional Sources of Information ...4

2. Calling the DII COE Tools Using the API Toolkit ...5
2.1 COEAskUser ...7
2.2 COEFindSeg..9
2.3 COEInstError .. 13
2.4 COEMsg ... 15
2.5 COEPrompt... 17
2.6 COEPromptPasswd ... 19
2.7 COEUpdateHome.. 22

3. Interfacing with the DII COE Printer API Toolkit.. 25
3.1 Printer APIs... 27
3.1.1 close_printer .. 27
3.1.2 get_printer_descriptions ... 29
3.1.3 get_printer_name ... 31
3.1.4 get_printer_type... 33
3.1.5 open_printer... 35
3.1.6 page_break... 38
3.1.7 VDirectPrintFile... 41
3.1.8 VDirectPrintMsg.. 43
3.1.9 VPrintFile .. 45
3.1.10 VPrintMsg ... 47
3.1.11 write_printer .. 49
3.1.12 write_printer_array... 52
3.2 Printer API Tools... 55
3.2.1 EM_get_current_printer_desc .. 55
3.2.2 EM_get_current_printer_name... 56
3.2.3 EM_get_current_printer_type .. 57

Appendix A - Notes .. 59

DII.30B.DECIBM.RG-1

February 19, 1997ii

This page intentionally left blank.

DII.30B.DECIBM.RG-1

February 19, 1997 1

Preface

The following conventions have been used in this document:

[HELVETICA FONT] Used to indicate keys to be pressed. For example, press [RETURN].

Courier Font Used to indicate entries to be typed at the keyboard, UNIX
commands, titles of windows and dialog boxes, file and directory
names, and screen text. For example, execute the following
command:

tar xvf /dev/rmt/3mn

"Quotation Marks" Used to indicate prompts and messages that appear on the screen.

Italics Used for emphasis.

DII.30B.DECIBM.RG-1

February 19, 19972

This page intentionally left blank.

DII.30B.DECIBM.RG-1

February 19, 1997 3

1. Introduction

1.1 Overview

This document provides information and guidance needed for using Defense Information
Infrastructure (DII) Common Operating Environment (COE) Version 3.0.0.3 public Application
Programmer Interfaces (APIs) for the Digital UNIX 4.0 Operating System and the AIX 4.1.4
Operating System. This document contains manual pages for all of the public APIs for the DII
COE toolkit for Digital UNIX 4.0 and AIX 4.1.4.

This guide is divided into the following three sections and one appendix:

Section Page

Introduction
Provides an overview of the DII COE API Reference Guide and lists
documents that can be referenced for further information about the DII COE
APIs.

3

Calling the DII COE Tools Using the API Toolkit
Includes manual pages for the following DII COE tools:

COEAskUser COEPrompt
COEFindSeg COEPromptPasswd
COEInstError COEUpdateHome
COEMsg

5

Interfacing with the DII COE Printer Using the API Toolkit
Includes manual pages for the following DII COE printer and printer
application tools:

close_printer VprintFile
get_printer_descriptions VPrintMsg
get_printer_name write_printer
get_printer_type write_printer_array
open_printer EM_get_current_printer_desc
page_break EM_get_current_printer_name
VdirectPrintFile EM_get_current_printer_type
VdirectPrintMsg

25

Notes
Shows lines that are missing in the DII_DEV/include/Printer/PrintAPI.h
file and must be added for the printer APIs and printer examples to work
correctly.

59

The DII COE toolkit APIs and printer toolkit APIs are located in separate sections. Each manual
page includes a synopsis, parameters, a description, return values, notes, a reference to related
functions, and an example.

DII.30B.DECIBM.RG-1

February 19, 19974

Descriptions assume familiarity with the C programming language and with the DII COE
development environment.

1.2 Additional Sources of Information

Reference the following documents for more information about the APIs for the DII COE toolkit:

C Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification Version 2.0, DII COE I&RTS:Rev 2.0, Inter-National
Research Institute, October 23, 1995

C Defense Information Infrastructure (DII) Common Operating Environment (COE)
Version 3.0/B Programming Guide (Digital UNIX and AIX), DII.30B.DECIBM.PG-1,
Inter-National Research Institute, February 19, 1997.

DII.30B.DECIBM.RG-1

February 19, 1997 5

2. Calling the DII COE Tools Using the API Toolkit

The API toolkit provides developers with an interface to the DII COE runtime tools. A program
can link with a public API to display and retrieve segment information. This section defines the
interface for each call, including return values and necessary parameters. This section provides
information about using the following APIs:

C COEAskUser

C COEFindSeg

C COEInstError

C COEMsg

C COEPrompt

C COEPromptPasswd

C COEUpdateHome.

NOTE: Reference Appendix A, Notes, for more information about using COEPromptPasswd.

The format of each manual page is as follows:

NAME
Function NameCProvides a brief description of the function.

SYNOPSIS
Presents the calling syntax for the routine, including the declarations of the arguments and the
return type. For example:

returntype XFunctionName (type1 *arg1, type2 *arg2, type3 *arg3);

PARAMETERS
Describes each of the parameters used by the function.

DESCRIPTION
Describes what the function does and what events or side effects it causes.

RETURNS
Describes what the function returns.

DII.30B.DECIBM.RG-1

February 19, 19976

NOTE
Provides any notes about the function.

SEE ALSO
Provides a reference to related functions.

EXAMPLE
Provides an example of how to use the function.

DII.30B.DECIBM.RG-1

February 19, 1997 7

2.1 COEAskUser

NAME
COEAskUserCCOEAskUser() displays a window with a question and two answer buttons.

SYNOPSIS
#include <DIITools.h>

int COEAskUser
(

char *question,
char *b1_label,
char *b2_label

);

PARAMETERS
char *question

question - Null terminated string. The question to present to the user.
char *b1_label

b1_label - Null terminated string. The equivalent of the Yes button; selection causes
the function to return a 1 (TRUE).

char *b2_label
b2_label - Null terminated string. The equivalent of the No button; selection causes the
function to return a 0 (FALSE).

DESCRIPTION
The COEAskUser library function creates an interface that prompts the user for a question and
gives a choice of Yes or No buttons to select, where Yes and No are the default labels assigned.
The message question and the answer button labels can be assigned by the user. Null values for
b1_label and b2_label will display default button labels.

RETURNS
COEFAILURE

Failure - The interface could not be displayed. On returning COEFAILURE, COEerrno is
set to:
COEERR_NO_DISPLAY - Window could not be displayed.
COEERR_NO_MESSAGE - Question string not passed in.

TRUE
True - The equivalent Yes button selected by the user.

FALSE
False - The equivalent No button selected by the user.

NOTE
To support multi-line text, place a \ followed by a [RETURN] in the appropriate location(s).

SEE ALSO
COEMsg, COEPrompt, COEPromptPasswd, and COEUpdateHome.
EXAMPLE: COEAskUser

To build this routine, use the following command (substitute your location for Motif libraries and

DII.30B.DECIBM.RG-1

February 19, 19978

includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEAskUser_example COEAskUser_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEAskUser_example COEAskUser_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link
COEUserPrompts.lib during compilation. (The COEUserPrompts.dll will be
required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEAskUser_example */
/******************************/
int main(int argc, char *argv[])
{

char b1_lab[] = "MY_YES";
char b2_lab[] = "MY_NO";
char message[]="This is my test Message";
int ret_val;

/* Call DII/COE Library Function */
ret_val = COEAskUser(message, b1_lab, b2_lab);
exit(ret_val);

}

DII.30B.DECIBM.RG-1

February 19, 1997 9

2.2 COEFindSeg

NAME
COEFindSegCCOEFindSeg() returns information about a requested segment.

SYNOPSIS
#include <DIITools.h>

int COEFindSeg
(

int use_installed,
char *in_segdir,
char *in_segname,
char *prefix,
char *seg_type,
char *seg_attrib,
char *actual_dir

);

PARAMETERS
int use_installed

use_installed - Installed segments only - 1, any segments - 0.
char *in_segdir

in_segdir - Null terminated string. The full directory path leading up to and including
segdir.

char *in_segname
in_segname - Null terminated string. The segment name of the segment residing in
segdir.

char *prefix
prefix - Segment prefix returned.

char *seg_type
seg_type - Segment type returned.

char *seg_attrib
seg_attrib - Segment attribute returned if available.

char *actual_dir
actual_dir - Segments actual directory returned.

DESCRIPTION
The COEFindSeg library function searches a given segment directory for a given segment name to
see if it is on disk and can be read. If no directory is specified, COEFindSeg searches for installed
segments by default. When the segment is found, COEFindSeg returns the segment directory,
name, prefix, type, and attribute (if the segment has an attribute).

DII.30B.DECIBM.RG-1

February 19, 199710

RETURNS
COESUCCESS

Success - The function was successful in finding the requested segment.
COEFAILURE

Failure - The function was not successful in finding the requested segment. On returning
COEFAILURE, COEerrno is set to:
COEERR_SEG_NOT_FND - Requested segment not found.
COEERR_NULL_PARAMS - Both segment name and directory parameters were NULL or
empty.
COEERR_FOUND_NOT_INSTALLED - Requested segment was not installed as requested.

NOTE
None.

SEE ALSO
COEAskUser, COEInstError, COEMsg, and COEUpdateHome.

DII.30B.DECIBM.RG-1

February 19, 1997 11

EXAMPLE: COEFindSeg

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEFindSeg_example COEFindSeg_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEFindSeg_example COEFindSeg_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link COECom.lib,
COESeg.lib and COETools.lib during compilation.

*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEFindSeg_example */
/******************************/
int main(int argc, char *argv[])
{

char segdir[] = "";
char segname[] = "X Windows";
int ret_val;
char out_prefix[8];
char out_segtype[81];
char out_segattr[81];
char out_actualdir[257];

/* Call DII/COE Library Function */
ret_val = COEFindSeg(1,segdir,
segname,out_prefix,out_segtype,out_segattr,out_actualdir); if(ret_val ==
COESUCCESS)

{
printf("Found segment '%s' prefix '%s' type '%s' at
'%s'\n",segname,out_prefix,out_segtype,out_actualdir);

}
else
{
printf("Segment '%s' not found \n", segname);

}

DII.30B.DECIBM.RG-1

February 19, 199712

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 1997 13

2.3 COEInstError

NAME
COEInstErrorCCOEInstError() displays a window with the error message.

SYNOPSIS
#include <DIITools.h>

int COEInstError
(

char *message
);

PARAMETERS
char *message

message - Null terminated string. Error message to display.

DESCRIPTION
The COEInstError library function creates an interface that displays an installation error message.
The message can be assigned by the caller of the function. COEFAILURE is always returned. It is up
to the calling application to perform appropriate cleanup and return a failed exit status to its
parent program (if applicable).

RETURNS
COEFAILURE

Failure - Always returned to signal the calling process that an error has occurred. On returning
COEFAILURE, COEerrno is set to:

 COEERR_NO_DISPLAY - Window could not be displayed.
 COEERR_NO_MESSAGE - Message string not passed in.

NOTE
To support multi-line text, place a \ followed by a [RETURN] in the appropriate location(s).

SEE ALSO
COEMsg, COEPrompt, COEPromptPasswd, and COEUpdateHome.

DII.30B.DECIBM.RG-1

February 19, 199714

EXAMPLE: COEInstError

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEInstError_example COEInstError_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEInstError_example COEInstError_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link
COEUserPrompts.lib during compilation. (The COEUserPrompts.dll will be
required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEInstError_example */
/******************************/
int main(int argc, char *argv[])
{

char message[]="Cannot Access ABC Server";
int ret_val;

/* Call DII/COE Library Function */
ret_val = COEInstError(message);

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 1997 15

2.4 COEMsg

NAME
COEMsgCCOEMsg() displays a window with a message of choice.

SYNOPSIS
#include <DIITools.h>

int COEMsg
(

char *message
);

PARAMETERS
char *message

message - Null terminated string. Message to display to the user.

DESCRIPTION
The COEMsg library function creates an interface that displays a message. The message can be
assigned by the caller of the function, which makes it versatile enough to be used as a message for
any program.

RETURNS
COESUCCESS

Success - The function was successful in displaying the message.
COEFAILURE

Failure - The function was not successful in displaying the message. On returning
COEFAILURE, COEerrno is set to:

 COEERR_NO_DISPLAY - Window could not be displayed.
 COEERR_NO_MESSAGE - Question string not passed in.

NOTE
To support multi-line text, place a \ followed by a [RETURN] in the appropriate location(s).

SEE ALSO
COEAskUser, COEInstError, COEPrompt, COEPromptPasswd, and COEUpdateHome.

DII.30B.DECIBM.RG-1

February 19, 199716

EXAMPLE: COEMsg

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEMsg_example COEMsg_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEMsg_example COEMsg_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link
COEUserPrompts.lib during compilation. (The COEUserPrompts.dll will be
required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEMsg_example */
/******************************/
int main(int argc, char *argv[])
{

char message[]="XYZ Has Been Updated";
int ret_val;

/* Call DII/COE Library Function */
ret_val = COEMsg(message);

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 1997 17

2.5 COEPrompt

NAME
COEPromptCCOEPrompt() displays a window with a user-assigned prompt and an editable text
area for user input.

SYNOPSIS
#include <DIITools.h>

int COEPrompt
(

char *prompt,
int max_len,
char *text_return

);

PARAMETERS
char *prompt

prompt - Null terminated string. Prompt text to display.
int max_len

max_len - Maximum length of text accepted in the editable text field.
char *text_return

text_return - Null terminated string. Text returnedCmust be allocated to max_len +
1.

DESCRIPTION
The COEPrompt library function creates an interface that displays a prompt and a text area to
accept user input. The prompt can be assigned by the caller of the function. The user input will be
sent to stdout.

RETURNS
COESUCCESS

Success - The function was successful in displaying the prompt and the text area.
COEFAILURE

Failure - The function was not successful in displaying the prompt and the text area. On
returning COEFAILURE, COEerrno is set to:
COEERR_NO_DISPLAY - Window could not be displayed.
COEERR_NO_MESSAGE - Prompt string not passed in.

NOTE
To support multi-line text, place a \ followed by a [RETURN] in the appropriate location(s).

SEE ALSO
COEAskUser, COEInstError, COEMsg, COEPromptPasswd, COEUpdateHome.
EXAMPLE: COEPrompt

DII.30B.DECIBM.RG-1

February 19, 199718

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEPrompt_example COEPrompt_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEPrompt_example COEPrompt_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link
COEUserPrompts.lib during compilation. (The COEUserPrompts.dll will be
required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEPrompt_example */
/******************************/
int main(int argc, char *argv[])
{

char message[]="Please Enter What Server To Access : ";
int input_text_len = 15;
int ret_val;
char ret_text[16];

/* Call DII/COE Library Function */
ret_val = COEPrompt(message, input_text_len, ret_text);

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 1997 19

2.6 COEPromptPasswd

NAME
COEPromptPasswdCCOEPromptPasswd() displays a window with an optional Password
prompt message and an optional Verify prompt.

SYNOPSIS
#include <DIITools.h>

int COEPromptPasswd
(

int max_text_len,
int user_wants_verify_prompt,
char *prompt,
char *passwd_return

);

PARAMETERS
int max_text_len

max_text_len - Maximum characters the user may enter for the password.
int user_wants_verify_prompt

user_wants_verify_prompt - Flag whether to display a Verify prompt.
char *prompt

prompt - Null terminated string. Optional prompt to display text.
char *passwd_return

passwd_return - Password returned.

DESCRIPTION
The COEPromptPasswd library function creates an interface that displays an optional Password
prompt message and an optional Verify prompt.The optional Verify prompt can either be
(1) displayed by passing in TRUE or (2) not displayed by passing in FALSE through the third
parameter. The password entered will be sent to stdout.

RETURNS
COESUCCESS

Success - The function was successful. (This function is always successful if the Verify
prompt is not displayed.)

COEFAILURE
Failure - The interface cannot be displayed, or the Password and Verify text are not the
same. On returning COEFAILURE, COEerrno is set to:
COEERR_NO_DISPLAY - Window could not be displayed.
COEERR_EMPTY_FIELD - No Password text or verify text returned.
COEERR_NO_MATCH - Password and Verify string do not match.

NOTE
The password has a default maximum length of 40 characters when max_text_len is less than or
equal to zero. The maximum password length can be increased or decreased by the caller of the
function via the max_text_len field. If the input maximum length is exceeded, the input will be

DII.30B.DECIBM.RG-1

February 19, 199720

truncated.

To support multi-line text, place a \ followed by a [RETURN] in the appropriate location(s).

SEE ALSO
COEAskUser, COEInstError, COEMsg, COEPrompt, and COEUpdateHome.

DII.30B.DECIBM.RG-1

February 19, 1997 21

EXAMPLE: COEPromptPasswd

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEPromptPasswd_example COEPromptPasswd_example.c -
I/h/DII_DEV/include -I/usr/include/Motif1.2 -I/usr/include/X11R5 -
L/h/DII_DEV/libs -lCOETools -lCOE -lPrintClient -L/usr/lib/X11R5 -
L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEPromptPasswd_example COEPromptPasswd_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen

NT:
In your compile environment, make sure your include file path includes
DII_DEV/include and your library path includes DII_DEV/libs. Link
COEUserPrompts.lib during compilation. (The COEUserPrompts.dll will be
required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEPromptPasswd_example */
/******************************/
int main(int argc, char *argv[])
{

int input_text_len = 10;
int ret_val;
char ret_passwd[11];

/* Call DII/COE Library Function */
ret_val = COEPromptPasswd(input_text_len, 1,
"Please enter passwd for MyUser", ret_passwd); if (ret_val == COESUCCESS) {
printf("Password Is Correct\n");
}
else {
printf("Password Is Incorrect\n");
}

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 199722

2.7 COEUpdateHome

NAME
COEUpdateHomeCCOEUpdateHome() updates the home environment variable within a script
file to point to where the segment was actually installed.

SYNOPSIS
#include <DIITools.h>

int COEUpdateHome
(

char *script_name,
char *env_var

);

PARAMETERS
char *script_name

script_name - Null terminated string. Name of the script file to be updated.
char *env_var

env_var - Null terminated string. Environment variable to be updated.

DESCRIPTION
The COEUpdateHome library function modifies the given environment variable in the given script
by setting it to the new home directory of a segment. COEUpdateHome is intended to be invoked
from within a segment=s PostInstall script to adjust to any change in the segment=s home directory
that may occur during installation.

RETURNS
COESUCCESS

Success - The environment variable has been successfully modified to the new home directory.
COEFAILURE

Failure - Failed to modify the environment variable because the script file does not exist, or
the environment variable does not exist, or unable to determine the correct home directory.

NOTE
The new home directory is determined by checking the current directory where COEUpdateHome
is invoked. If it is invoked from within the PostInstall script, the home directory will be the
current directory without the SegDescrip subdirectory. If it is invoked from the command line, the
home directory will be the current directory.

SEE ALSO
COEAskUser, COEFindSeg, COEInstError, COEMsg, COEPrompt, and COEPromptPasswd.
EXAMPLE: COEUpdateHome

To build this routine, use the following command (substitute your location for Motif libraries and
includes and the DII_DEV directory):

DII.30B.DECIBM.RG-1

February 19, 1997 23

/*
To build this routine use the following command(substitute your location for
the DII_DEV directory, Motif libraries and includes) :

HP:
cc -Aa -o COEUpdateHome_example COEUpdateHome_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs -lCOETools -lCOE
-L/usr/lib/X11R5 -L/usr/lib/Motif1.2 -lXm -lXt -lX11

SOLARIS:
cc -o COEUpdateHome_example COEUpdateHome_example.c -I/h/DII_DEV/include -
I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs -lCOETools -
lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2 -lXm -lXt -lX11 -
lgen */
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEUpdateHome_example */
/******************************/
int main(int argc, char *argv[])
{

char script_name[] = "Scripts/.cshrc";
char env_var[] = "MY_HOME";
int ret_val;

/* Call DII/COE Library Function */
ret_val = COEUpdateHome(script_name, env_var);

exit(ret_val);
}

DII.30B.DECIBM.RG-1

February 19, 199724

This page intentionally left blank.

DII.30B.DECIBM.RG-1

February 19, 1997 25

3. Interfacing with the DII COE Printer API Toolkit

The DII COE printer API toolkit provides developers with an interface to the DII COE printers.
A program can link with a public API to print information. This section defines the interface
needed for each call, including return values and necessary parameters.

Each DII COE printer API belongs in one of two groups. The following lower level printer APIs
belong in the first group and are described in Section 3.1, Printer APIs: close_printer,
get_printer_descriptions, get_printer_name, get_printer_type, open_printer, page_break,
write_printer, and write_printer_array. The following higher level printer APIs belong in the
second group and are also described in Section 3.1, Printer APIs: VDirectPrintFile,
VDirectPrintMsg, VPrintFile, and VPrintMsg.

It is recommended that you not use APIs from both groups within the same application when
using the DII COE printer APIs. For example, if you use the open_printer API, which belongs in
the first group, you should not then use the VDirectPrintFile API, which belongs in the second
group.

The following printer API tools provide current printer information and are described in
Section 3.2, Printer API Tools: EM_get_current_printer_desc, EM_get_current_printer_name,
and EM_get_current_printer_type. These executable programs provide the same functionality as
the C functions of the same name.

Detailed information about using the DII COE printer APIs and printer API tools is provided in
the following subsections.

NOTE: Please reference Appendix A, Notes, for more information about using the COE printer
API toolkit.

The format of each manual page is as follows:

NAME
Function NameCProvides a brief description of the function.

SYNOPSIS
Presents the calling syntax for the routine, including the declarations of the arguments and return
type. For example:

returntype XFunctionName (type1 *arg1, type2 *arg2, type3 *arg3);

DII.30B.DECIBM.RG-1

February 19, 199726

PARAMETERS
Describes each of the parameters used by the function.

DESCRIPTION
Describes what the function does and what events or side effects it causes.

RETURNS
Describes what the function returns.

NOTE
Provides any notes about the function.

SEE ALSO
Refers to related functions.

EXAMPLE
Provides an example of how some of the most common functions are used.

DII.30B.DECIBM.RG-1

February 19, 1997 27

3.1 Printer APIs

3.1.1 close_printer

NAME
close_printerCclose_printer finishes a print job and sends it to the printer.

SYNOPSIS
#include <Printer/PrintAPI.h>
int close_printer
(

char **file_name,
FILE **file_pointer

);

PARAMETERS
char **file_name

Pointer to a null terminated character string returned from open_printer containing the
address of the name of a temporary file to be printed.

FILE **file_pointer
Address of the file handle of a temporary file to be printed, which is returned from
open_printer.

DESCRIPTION
The close_printer function is used to conclude a single print job and send the data to the printer. If
close_printer is not called, the print job will not be printed. A single print job referenced by
file_pointer is closed and queued for printing. The temporary file created by open_printer is
deleted upon completion of the print job.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
The area pointed to by file_pointer should be released using the free(3) library call when it is no
longer needed.

SEE ALSO
get_printer_name, get_printer_type, get_printer_descriptions, open_printer, page_break,
write_printer_array, and write_printer.

DII.30B.DECIBM.RG-1

February 19, 199728

EXAMPLE: close_printer

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o close_printer_example close_printer_example.c -I/h/DII_DEV/include
 -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/*****************************/
/* close_printer_example */
/*****************************/
int main()
{
 char *tmp_filename; /* Holds temporary print file name */
 FILE *file_p; /* Holds the file pointer to the temp file */

 /*
 * open_printer() opens printer with security level "Unclassified",
 * "80" columns/line, "60" lines/page,single spacing of lines, with "0" left
 * indentation of each line of text. "tmp_filename" is the complete path
 * of the temporary file created to contain the printed text, and "file_p"
 * is the file pointer to the temporary file that is being printed.
 */
 if(open_printer("Unclassified",80,60,1,0,&tmp_filename,&file_p) ==
 PRT_SUCCESS) {
 /*
 * close_printer() prints the file "tmp_filename" and then
 * closes the file.
 */
 if(close_printer(&tmp_filename,&file_p) != PRT_SUCCESS) {
 /*
 * If close_printer() fails, free malloced memory and exit
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }
 /*
 * If all functions succeeded, then free malloced memory and exit
 */
 free(tmp_filename);
 exit(PRT_SUCCESS);
 }
 else {
 exit(PRT_FAILURE);
 }
 return PRT_SUCCESS;
}

DII.30B.DECIBM.RG-1

February 19, 1997 29

3.1.2 get_printer_descriptions

NAME
get_printer_descriptionsCget_printer_descriptions returns a description of the current default
printer.

SYNOPSIS
#include <Printer/PrintAPI.h>
int get_printer_descriptions(char **c_printer_description);

PARAMETERS
char **c_printer_description

Returns a pointer to a null terminated character string containing the description of the
current default printer.

DESCRIPTION
The get_printer_descriptions function allows an application to retrieve the description of the
default printer.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
The area pointed to by c_printer_description should be released using the free(3) library call
when it is no longer needed.

SEE ALSO
get_printer_name, get_printer_type, open_printer, page_break, write_printer_array, write_printer,
and close_printer.

DII.30B.DECIBM.RG-1

February 19, 199730

EXAMPLE: get_printer_descriptions

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o get_printer_description_example
 get_printer_descriptions_example.c -I/h/DII_DEV/include
 -L/h/DII_DEV/libs -lPrintClient
 -lCommon
*/
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/***************************************/
/* get_printer_descriptions_example */
/***************************************/
int main()
{
 char *prtdesc;

 /* Call DII/COE Library Function */
 if(get_printer_descriptions(&prtdesc) == PRT_SUCCESS) {
 printf("%s\n", prtdesc);
 free(prtdesc);
 return PRT_SUCCESS;
 }
 else {
 return PRT_FAILURE;
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 31

3.1.3 get_printer_name

NAME
get_printer_nameCget_printer_name retrieves the name of the current default printer selected by
the user.

SYNOPSIS
#include <Printer/PrintAPI.h>
int get_printer_name(char **c_printer_name);

PARAMETERS
char **c_printer_name;

Returns a pointer to a null terminated character string containing the name of the current
default printer.

DESCRIPTION
The get_printer_name function allows an application to retrieve the name of the default printer.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
The area pointed to by c_printer_name should be released using the free(3) library call when it
is no longer needed.

SEE ALSO
get_printer_type, get_printer_descriptions, open_printer, page_break, write_printer_array,
write_printer, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 199732

EXAMPLE: get_printer_name

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o get_printer_name_example get_printer_name_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/*******************************/
/* get_printer_name_example */
/*******************************/
int main()
{
 char *prtname;

 /* Call DII/COE Library Function */
 if(get_printer_name(&prtname) == PRT_SUCCESS) {
 printf("%s\n", prtname);
 free(prtname);
 return PRT_SUCCESS;
 }
 else {
 return PRT_FAILURE;
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 33

3.1.4 get_printer_type

NAME
get_printer_typeCget_printer_type retrieves the type of current default printer.

SYNOPSIS
#include <Printer/PrintAPI.h>
int get_printer_type(char **c_printer_type);

PARAMETERS
char **c_printer_type;

Returns a pointer to a null terminated character string containing the type of current
default printer.

DESCRIPTION
The get_printer_type function allows an application to retrieve the type of default printer. The
type is either (1) ASCII, (2) HPGL, or (3) PostScript.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
The area pointed to by c_printer_type should be released using the free(3) library call when it
is no longer needed.

SEE ALSO
get_printer_name, get_printer_descriptions, open_printer, page_break, write_printer_array,
write_printer, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 199734

EXAMPLE: get_printer_type

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o get_printer_type_example
 get_printer_type_example.c -I/h/DII_DEV/include
 -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdlib.h>
#include <Printer/Printer.h>
#include <Printer/PrintAPI.h>

/*******************************/
/* get_printer_type_example */
/*******************************/
int main()
{
 char *prttype;

 if(get_printer_type(&prttype) == PRT_SUCCESS) {
 printf("%s\n", prttype);
 free(prttype);
 return PRT_SUCCESS;
 }
 else {
 return PRT_FAILURE;
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 35

3.1.5 open_printer

NAME
open_printerCopen_printer opens a connection to a printer.

SYNOPSIS
#include <Printer/PrintAPI.h>
int open_printer
(

char *xcp_security_level,
int xi_line_length,
int xi_page_length,
int xi_line_spacing,
int xi_indent,
char **xcp_file_name,
FILE **xfp

);

PARAMETERS
char *xcp_security_level

Security level of a document, used for header and footer lines. xcp_security_level is
a null terminated character string. It is the caller's responsibility to determine and
document the proper security level of the system and to format the classification string.

int xi_line_length
Line length for a new print job. This is the maximum number of characters for each line
of printed text, including the indentation characters. xi_line_length of 0 selects the
default line length of 80.

int xi_page_length
Page length for a new print job. This is the number of lines of text to print per page.
xi_page_length of 0 selects the default page length of 60.

int xi_line_spacing
Line spacing for a new print job. This is the number of line feeds per line of text. A line
spacing of 1 provides single spaced output. A line spacing of 2 provides double spaced
output. xi_line_spacing of 0 selects single spacing, which is the default.

int xi_indent
Indentation width for a new print job. Number of characters to left indent each line of
text.

char **xcp_file_name
Returns the complete path of the temporary print file created by open_printer to contain
the printed text.

FILE **xfp
Returns a file pointer open to the temporary print file created by open_printer. This file
is closed when the close_printer() API is called.

DII.30B.DECIBM.RG-1

February 19, 199736

DESCRIPTION
The open_printer function establishes a print context, including the security level, line length, page
length, line spacing, and indentation for the print job. These variables are used to format the job
before sending it to the printer. This function returns a file pointer through its last argument, and
this file pointer is used for all subsequent actions on this print job.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
The area pointed to by file_name is allocated dynamically using the malloc(3) library function
and should be returned by the free(3) library function following the close_printer() API call.

SEE ALSO
get_printer_name, get_printer_type, get_printer_descriptions, page_break, write_printer_array,
write_printer, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 1997 37

EXAMPLE: open_printer

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o open_printer_example open_printer_name_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/***************************/
/* open_printer_example */
/***************************/
int main()
{
 char *tmp_filename; /* Holds temporary print file name */
 FILE *file_p; /* Holds the file pointer to the temp file */

 /*
 * open_printer() opens printer with security level "Unclassified",
 * "80" columns/line, "60" lines/page,single spacing of lines, with "0" left
 * indentation of each line of text. "tmp_filename" is the complete path
 * of the temporary file created to contain the printed text, and "file_p"
 * is the file pointer to the temporary file that is being printed.
 */
 if(open_printer("Unclassified",80,60,1,0,&tmp_filename,&file_p) ==
 PRT_SUCCESS) {

 /*
 * close_printer() prints the file "tmp_filename" and then
 * closes the file.
 */
 if(close_printer(&tmp_filename,&file_p) != PRT_SUCCESS) {
 /*
 * If close_printer() fails, free malloced memory and exit
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }

 /*
 * If all functions succeeded, then free malloced memory and exit
 */
 free(tmp_filename);
 exit(PRT_SUCCESS);
 }
 else {
 exit(PRT_FAILURE);
 }
 return PRT_SUCCESS;
}

DII.30B.DECIBM.RG-1

February 19, 199738

3.1.6 page_break

NAME
page_breakCpage_break inserts a page break in a print job.

SYNOPSIS
#include <Printer/PrintAPI.h>

int page_break(FILE **xfp);

PARAMETERS
FILE **xfp

File handle obtained from open_printer.

DESCRIPTION
The page_break function is used to indicate that subsequent data sent to a print job should begin
on a new page.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
None.

SEE ALSO
get_printer_name, get_printer_type, get_printer_descriptions, open_printer, write_printer_array,
write_printer, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 1997 39

EXAMPLE: page_break

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o page_break page_break_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/*****************************/
/* page_break_example */
/*****************************/
int main()
{
 char *tmp_filename; /* Holds temporary print file name */
 FILE *file_p; /* Holds the file pointer to the temp file */

 /*
 * open_printer() opens printer with security level "Unclassified",
 * "80" columns/line, "60" lines/page,single spacing of lines, with "0" left
 * indentation of each line of text. "tmp_filename" is the complete path
 * of the temporary file created to contain the printed text, and "file_p"
 * is the file pointer to the temporary file that is being printed.
 */
 if(open_printer("Unclassified",80,60,1,0,&tmp_filename,&file_p) ==
 PRT_SUCCESS) {
 /*
 * Add a page break to the file pointed to by "file_p".
 */
 if(page_break(&file_p) != PRT_SUCCESS) {
 /*
 * If page_break() fails, free malloced memory and return
 * PRT_FAILURE.
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }
 /*
 * close_printer() prints the file "tmp_filename" and then
 * closes the file.
 */
 if(close_printer(&tmp_filename,&file_p) != PRT_SUCCESS) {
 /*
 * If close_printer() fails, free malloced memory and return
 * PRT_FAILURE.
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }
 /*
 * If all functions succeeded, then free malloced memory and return

DII.30B.DECIBM.RG-1

February 19, 199740

 * PRT_SUCCESS.
 */
 free(tmp_filename);
 exit (PRT_SUCCESS);
 }
 else {
 exit (PRT_FAILURE);
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 41

3.1.7 VDirectPrintFile

NAME
VDirectPrintFileCVDirectPrintFile sends a file to the specified printer.

SYNOPSIS
#include <Printer/PrintAPI.h>

int VDirectPrintFile
(

char *filename,
int prt_rec

);

PARAMETERS
char *filename

Name of file to print. Null terminated character string.
int prt_rec

Printer to use (-1 for default).

DESCRIPTION
The VDirectPrintFile function prints directly to the specified printer. The printer number is
specified as a return value from a previous VPrintXXX or VDirectPrintXXX function call. The
printer number is -1 for the DII COE default printer.

RETURNS
Returns (-1) if canceled or if an error occurred; otherwise, returns the number of the printer used.

NOTE
No classification banner will be printed with the job.

SEE ALSO
VPrintMsg, VDirectPrintMsg, and VPrintFile.

DII.30B.DECIBM.RG-1

February 19, 199742

EXAMPLE: VDirectPrintFile

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
 cc -Aa -o VDirectPrintFile_example VDirectPrintFile_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <Printer/Printer.h>
#include <Printer/PrintAPI.h>

/*******************************/
/* VDirectPrintFile_example */
/*******************************/
int main(int argc, char *argv[])
{
 int i;
 int err;

 for(i=1;i<argc;i++) {
 /* Call DII/COE Library Function */
 err = VDirectPrintFile(argv[i], -1);
 if (err != -1) {
 printf("file %s sent to printer\n",argv[i]);
 }
 else {
 printf("error\n");
 }
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 43

3.1.8 VDirectPrintMsg

NAME
VDirectPrintMsgCVDirectPrintMsg sends an internal text buffer to the default printer.

SYNOPSIS
#include <Printer/PrintAPI.h>

int VDirectPrintMsg
(

char **msg_array,
int nlines

);

PARAMETERS
char **msg_array

Array of null terminated text strings.
int nlines

Number of lines in the array.

DESCRIPTION
The VDirectPrintMsg function prints a text message directly to the DII COE default printer.

RETURNS
Returns (-1) if canceled or if an error occurred; otherwise, returns the number of the printer used.

NOTE
No classification banner will be printed with the job.

SEE ALSO
VPrintMsg, VPrintFile, and VDirectPrintFile.

DII.30B.DECIBM.RG-1

February 19, 199744

EXAMPLE: VDirectPrintMsg

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o VDirectPrintMsg_example VDirectPrintMsg_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <Printer/PrintAPI.h>

/******************************/
/* VDirectPrintMsg_example */
/******************************/
#define NUM_OF_LINES 3

int main()
{
 int err;
 char *c_string_array[NUM_OF_LINES]; /* Used with VDirectPrintMsg() */

 /*
 * Create an array of strings to pass to VDirectPrintMsg. The last
 * entry in the array must be NULL.
 */
 c_string_array[0] = "This is line 1";
 c_string_array[1] = "This is line 2";
 c_string_array[2] = NULL;
 err = VDirectPrintMsg(c_string_array, NUM_OF_LINES);
 if (err != -1) {
 printf("sent to default printer\n");
 }
 else {
 printf("error\n");
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 45

3.1.9 VPrintFile

NAME
VPrintFileCVPrintFile sends a file to an operator-selected printer.

SYNOPSIS
#include <Printer/PrintAPI.h>

int VPrintFile(char *filename);

PARAMETERS
char *filename

Null terminated string. Name of the file to be printed.

DESCRIPTION
The VPrintFile function retrieves all available printers on the network and displays them in the
Print Selector window for operator selection or cancellation. Once the selection has been
made, the selected item can be printed.

RETURNS
Returns (-1) if canceled or if an error occurred; otherwise, returns the number of the printer used.

NOTE
None.

SEE ALSO
VPrintMsg, VDirectPrintMsg, and VDirectPrintFile.

DII.30B.DECIBM.RG-1

February 19, 199746

EXAMPLE: VPrintFile

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o VPrintFile_example VPrintFile_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <Printer/PrintAPI.h>

/*****************************/
/* VPrintFile_example */
/*****************************/
int main(int argc, char *argv[])
{
 int i;
 int err;

 for(i=1;i<argc;i++) {
 err = VPrintFile(argv[i]);
 if (err != -1) {
 printf("file %s sent to printer\n",argv[i]);
 }
 else {
 printf("error\n");
 }
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 47

3.1.10 VPrintMsg

NAME
VPrintMsgCVPrintMsg sends an internal text buffer to an operator-selected printer.

SYNOPSIS
#include <Printer/PrintAPI.h>

int VPrintMsg
(

char **msg_array,
int nlines

);

PARAMETERS
char **msg_array

Array of null terminated text strings.
int nlines

Number of lines in the array.

DESCRIPTION
The VPrintMsg function retrieves all available printers on the network and displays them in the
Print Selector window for operator selection or cancellation. Once the selection has been
made, the selected item can be printed.

RETURNS
Returns (-1) if canceled or if an error occurred; otherwise, returns the number of the printer used.

NOTE
None.

SEE ALSO
VDirectPrintMsg, VPrintFile, and VDirectPrintFile.

DII.30B.DECIBM.RG-1

February 19, 199748

EXAMPLE: VPrintMsg

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o VPrintMsg_example VPrintMsg_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <Printer/PrintAPI.h>

/*****************************/
/* VPrintMsg_example */
/*****************************/
#define NUM_OF_LINES 3

int main()
{
 int i;
 int err;
 char *c_string_array[NUM_OF_LINES]; /* Used with VDirectPrintMsg() */

 /*
 * Create an array of strings to pass to VDirectPrintMsg. The last
 * entry in the array must be NULL.
 */
 c_string_array[0] = "This is line 1";
 c_string_array[1] = "This is line 2";
 c_string_array[2] = NULL;
 printf("First line sent to printer\n");
 for(i=2;i<NUM_OF_LINES;i++) {
 /* Call DII/COE Library Function */
 err = VPrintMsg(c_string_array, NUM_OF_LINES);
 if (err != -1) {
 printf("line %d sent to default printer\n",i);
 }
 else {
 printf("error\n");
 }
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 49

3.1.11 write_printer

NAME
write_printerCwrite_printer adds a string to a print job.

SYNOPSIS
#include <Printer/PrintAPI.h>

int write_printer
(

char *c_string,
FILE *fp

);

PARAMETERS
char **c_string

Pointer to a single null terminated character string to be printed.
FILE *fp

File handle returned from open_printer.

DESCRIPTION
The write_printer function prints a character string to the print job specified by fp.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
None.

SEE ALSO
get_printer_name, get_printer_type, get_printer_descriptions, open_printer, page_break,
write_printer_array, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 199750

EXAMPLE: write_printer

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o write_printer_example write_printer_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/**************************/
/* write_printer_example */
/**************************/
int main()
{
 char *tmp_filename; /* Holds temporary print file name */
 FILE *file_p; /* Holds the file pointer to the temp file */
 char *c_string=NULL; /* Used with write_printer() */

 /*
 * open_printer() opens printer with security level "Unclassified",
 * "80" columns/line, "60" lines/page,single spacing of lines, with "0" left
 * indentation of each line of text. "tmp_filename" is the complete path
 * of the temporary file created to contain the printed text, and "file_p"
 * is the file pointer to the temporary file that is being printed.
 */
 if(open_printer("Unclassified",80,60,1,0,&tmp_filename,&file_p) ==
 PRT_SUCCESS) {
 /*
 * write_printer() writes a string to the file pointed to by "file_p".
 */
 c_string = "This is a line";
 if (write_printer(&c_string,file_p) != PRT_SUCCESS) {
 /*
 * If write_printer() fails, free malloced memory and return
 * PRT_FAILURE.
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }

 /*
 * close_printer() prints the file "tmp_filename" and then
 * closes the file.
 */
 if(close_printer(&tmp_filename,&file_p) != PRT_SUCCESS) {
 /*
 * If close_printer() fails, free malloced memory and return
 * PRT_FAILURE.
 */
 free(tmp_filename);

DII.30B.DECIBM.RG-1

February 19, 1997 51

 exit(PRT_SUCCESS);
 }

 /*
 * If all functions succeeded, then free malloced memory and return
 * PRT_SUCCESS.
 */
 free(tmp_filename);
 exit(PRT_SUCCESS);

 }
 else {
 exit(PRT_FAILURE);
 }
}

DII.30B.DECIBM.RG-1

February 19, 199752

3.1.12 write_printer_array

NAME
write_printer_arrayCwrite_printer_array adds an array of strings to a print job.

SYNOPSIS
#include <Printer/PrintAPI.h>

int write_printer_array
(

char **c_string,
FILE *fp

);

PARAMETERS
char **c_string

Array of null terminated character strings to be printed. The last string must be null to
indicate the last entry.

FILE *fp
File handle returned by open_printer.

DESCRIPTION
The write_printer_array function writes an array of strings, separated by line feed characters, to
the print job specified by fp.

RETURNS
PRT_SUCCESS on success; PRT_FAILURE if an error occurred.

NOTE
None.

SEE ALSO
get_printer_name, get_printer_type, get_printer_descriptions, open_printer, page_break,
write_printer, and close_printer.

DII.30B.DECIBM.RG-1

February 19, 1997 53

EXAMPLE: write_printer_array

To build this routine, use the following command (substitute your location for libraries and
includes and the DII_DEV directory):

/*
cc -Aa -o write_printer_array_example write_printer_array_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lPrintClient
*/
#include <stdio.h>
#include <stdlib.h>
#include <Printer/PrintAPI.h>

/********************************/
/* write_printer_array_example */
/********************************/
int main()
{
 char *tmp_filename; /* Holds temporary print file name */
 FILE *file_p; /* Holds the file pointer to the temp file */
 char *c_string_array[5]; /* Used with write_printer_array() */

 /*
 * open_printer() opens printer with security level "Unclassified",
 * "80" columns/line, "60" lines/page,single spacing of lines, with "0" left
 * indentation of each line of text. "tmp_filename" is the complete path
 * of the temporary file created to contain the printed text, and "file_p"
 * is the file pointer to the temporary file that is being printed.
 */
 if(open_printer("Unclassified",80,60,1,0,&tmp_filename,&file_p) ==
 PRT_SUCCESS) {

 /*
 * Create an array of strings to pass to write_printer_array. The last
 * entry in the array must be NULL.
 */
 c_string_array[0] = "This is line 1";
 c_string_array[1] = "This is line 2";
 c_string_array[2] = NULL;
 if (write_printer_array(c_string_array,file_p) != PRT_SUCCESS) {
 /*
 * If write_printer_array() fails, free malloced memory and exit
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }

 /*
 * close_printer() prints the file "tmp_filename" and then
 * closes the file.
 */
 if(close_printer(&tmp_filename,&file_p) != PRT_SUCCESS) {
 /*
 * If close_printer() fails, free malloced memory and return

DII.30B.DECIBM.RG-1

February 19, 199754

 * PRT_FAILURE.
 */
 free(tmp_filename);
 exit(PRT_FAILURE);
 }

 /*
 * If all functions succeeded, then free malloced memory and return
 * PRT_SUCCESS.
 */
 free(tmp_filename);
 exit(PRT_SUCCESS);

 }
 else {
 exit(PRT_FAILURE);
 }
}

DII.30B.DECIBM.RG-1

February 19, 1997 55

3.2 Printer API Tools

3.2.1 EM_get_current_printer_desc

NAME
EM_get_current_printer_desc

SYNOPSIS
EM_get_current_printer_desc

PARAMETERS
None.

DESCRIPTION
This C Shell script returns the text description of the currently selected printer.

RETURNS
The currently selected printer description.

NOTE
The executable script EM_get_current_printer_desc is in the /h/COE/bin directory.

SEE ALSO
EM_get_current_printer_name and EM_get_current_printer_type.

EXAMPLE: EM_get_current_printer_desc
#!/bin/csh

printer_desc = '/EM_get_current_printer_desc'

echo $printer_desc

DII.30B.DECIBM.RG-1

February 19, 199756

3.2.2 EM_get_current_printer_name

NAME
EM_get_current_printer_name

SYNOPSIS
EM_get_current_printer_name

PARAMETERS
None.

DESCRIPTION
This C Shell script returns the name of the currently selected printer.

RETURNS
The currently selected printer name.

NOTE
The executable script EM_get_current_printer_name is in the /h/COE/bin directory.

SEE ALSO
EM_get_current_printer_desc and EM_get_current_printer_type.

EXAMPLE: EM_get_current_printer_name
#!/bin/csh

printer_name = `/EM_get_current_printer_name`

echo $printer_name

DII.30B.DECIBM.RG-1

February 19, 1997 57

3.2.3 EM_get_current_printer_type

NAME
EM_get_current_printer_type

SYNOPSIS
EM_get_current_printer_type

PARAMETERS
None.

DESCRIPTION
This C Shell script returns the type of currently selected printer. Valid printer types are ASCII,
HPCL, and Postscript.

RETURNS
The currently selected printer type.

NOTE
The executable script EM_get_current_printer_type is in the /h/COE/bin directory.

SEE ALSO
EM_get_current_printer_desc and EM_get_current_printer_name.

EXAMPLE: EM_get_current_printer_type
#!/bin/csh

printer_type = `/EM_get_current_printer_type`

echo $printer_type

DII.30B.DECIBM.RG-1

February 19, 199758

This page intentionally left blank.

DII.30B.DECIBM.RG-1

February 19, 1997 59

Appendix A - Notes

Printers

The following lines are missing in the DII_DEV/include/Printer/PrintAPI.h file:

#ifndef _Printer_h_
#define _Printer_h_

#define PRT_SUCCESS 0
#define PRT_FAILURE -1

#define PRT_NO_HOST 1
#define PRT_TYPE_SETUP 2
#define PRT_QUEUE_NOT_EMPTY 3
#endif

These lines must be added for the printer APIs and printer examples to work correctly. Use the
editor of your choice and type the above lines at the end of the file.

DII.30B.DECIBM.RG-1

February 19, 199760

This page intentionally left blank.

